Solar Energy International Popular Books

Solar Energy International Biography & Facts

Solar energy is radiant light and heat from the Sun that is harnessed using a range of technologies such as solar power to generate electricity, solar thermal energy (including solar water heating), and solar architecture. It is an essential source of renewable energy, and its technologies are broadly characterized as either passive solar or active solar depending on how they capture and distribute solar energy or convert it into solar power. Active solar techniques include the use of photovoltaic systems, concentrated solar power, and solar water heating to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light-dispersing properties, and designing spaces that naturally circulate air. In 2011, the International Energy Agency said that "the development of affordable, inexhaustible and clean solar energy technologies will have huge longer-term benefits. It will increase countries' energy security through reliance on an indigenous, inexhaustible, and mostly import-independent resource, enhance sustainability, reduce pollution, lower the costs of mitigating global warming .... these advantages are global". Potential The Earth receives 174 petawatts (PW) of incoming solar radiation (insolation) at the upper atmosphere. Approximately 30% is reflected back to space while the rest, 122 PW, is absorbed by clouds, oceans and land masses. The spectrum of solar light at the Earth's surface is mostly spread across the visible and near-infrared ranges with a small part in the near-ultraviolet. Most of the world's population live in areas with insolation levels of 150–300 watts/m2, or 3.5–7.0 kWh/m2 per day.Solar radiation is absorbed by the Earth's land surface, oceans – which cover about 71% of the globe – and atmosphere. Warm air containing evaporated water from the oceans rises, causing atmospheric circulation or convection. When the air reaches a high altitude, where the temperature is low, water vapor condenses into clouds, which rain onto the Earth's surface, completing the water cycle. The latent heat of water condensation amplifies convection, producing atmospheric phenomena such as wind, cyclones and anticyclones. Sunlight absorbed by the oceans and land masses keeps the surface at an average temperature of 14 °C. By photosynthesis, green plants convert solar energy into chemically stored energy, which produces food, wood and the biomass from which fossil fuels are derived.The total solar energy absorbed by Earth's atmosphere, oceans and land masses is approximately 122 PW·year = 3,850,000 exajoules (EJ) per year. In 2002 (2019), this was more energy in one hour (one hour and 25 minutes) than the world used in one year. Photosynthesis captures approximately 3,000 EJ per year in biomass. The potential solar energy that could be used by humans differs from the amount of solar energy present near the surface of the planet because factors such as geography, time variation, cloud cover, and the land available to humans limit the amount of solar energy that we can acquire. In 2021, Carbon Tracker Initiative estimated the land area needed to generate all our energy from solar alone was 450,000 km2 — or about the same as the area of Sweden, or the area of Morocco, or the area of California (0.3% of the Earth's total land area).Solar technologies are categorized as either passive or active depending on the way they capture, convert and distribute sunlight and enable solar energy to be harnessed at different levels around the world, mostly depending on the distance from the Equator. Although solar energy refers primarily to the use of solar radiation for practical ends, all types of renewable energy, other than geothermal power and tidal power, are derived either directly or indirectly from the Sun. Active solar techniques use photovoltaics, concentrated solar power, solar thermal collectors, pumps, and fans to convert sunlight into useful output. Passive solar techniques include selecting materials with favorable thermal properties, designing spaces that naturally circulate air, and referencing the position of a building to the Sun. Active solar technologies increase the supply of energy and are considered supply side technologies, while passive solar technologies reduce the need for alternative resources and are generally considered demand-side technologies.In 2000, the United Nations Development Programme, UN Department of Economic and Social Affairs, and World Energy Council published an estimate of the potential solar energy that could be used by humans each year. This took into account factors such as insolation, cloud cover, and the land that is usable by humans. It was stated that solar energy has a global potential of 1,600 to 49,800 exajoules (4.4×1014 to 1.4×1016 kWh) per year (see table below). Thermal energy Solar thermal technologies can be used for water heating, space heating, space cooling and process heat generation. Early commercial adaptation In 1878, at the Universal Exposition in Paris, Augustin Mouchot successfully demonstrated a solar steam engine but could not continue development because of cheap coal and other factors. In 1897, Frank Shuman, a US inventor, engineer and solar energy pioneer built a small demonstration solar engine that worked by reflecting solar energy onto square boxes filled with ether, which has a lower boiling point than water and were fitted internally with black pipes which in turn powered a steam engine. In 1908 Shuman formed the Sun Power Company with the intent of building larger solar power plants. He, along with his technical advisor A.S.E. Ackermann and British physicist Sir Charles Vernon Boys, developed an improved system using mirrors to reflect solar energy upon collector boxes, increasing heating capacity to the extent that water could now be used instead of ether. Shuman then constructed a full-scale steam engine powered by low-pressure water, enabling him to patent the entire solar engine system by 1912. Shuman built the world's first solar thermal power station in Maadi, Egypt, between 1912 and 1913. His plant used parabolic troughs to power a 45–52 kilowatts (60–70 hp) engine that pumped more than 22,000 litres (4,800 imp gal; 5,800 US gal) of water per minute from the Nile River to adjacent cotton fields. Although the outbreak of World War I and the discovery of cheap oil in the 1930s discouraged the advancement of solar energy, Shuman's vision, and basic design were resurrected in the 1970s with a new wave of interest in solar thermal energy. In 1916 Shuman was quoted in the media advocating solar energy's utilization, saying: We have proved the commercial profit of sun power in the tropics and have more particularly proved that after our stores of oil and coal are exhausted the human race can receive unlimited power from the rays of the Sun. Water heating Solar hot water systems use sunlight to heat water. In middle geogr.... Discover the Solar Energy International popular books. Find the top 100 most popular Solar Energy International books.

Best Seller Solar Energy International Books of 2024

  • The Solar Energy Transition synopsis, comments

    The Solar Energy Transition

    Daniel Rich, Jon M Veigel, Allen M Barnett & John Byrne

    Solar energy is considered by many an attractive and practical option for America's energy future, one that is technically and commercially feasible as well as socially and env...

  • Sixteenth European Photovoltaic Solar Energy Conference synopsis, comments

    Sixteenth European Photovoltaic Solar Energy Conference

    H. Scheer, B. McNelis, W. Palz, H.A. Ossenbrink & P. Helm

    The European Photovoltaic Solar Energy Conferences are dedicated to accelerating the impetus towards sustainable development of global PV markets. The 16th in the series, held in G...

  • Solar Energy synopsis, comments

    Solar Energy

    H. Messel & S. T. Butler

    Solar Energy is a collection of lecture from the 17th International Science School for High School Students. The book presents nine papers that tackle concerns in solar energy. Th...

  • Introduction to Renewable Energy synopsis, comments

    Introduction to Renewable Energy

    Solar Energy International

    Solar Energy International's Introduction to Renewable Energy eBook is for those who wish to learn the basics of renewable energy including where it is found, how we can harvest ...

  • Taming the Sun synopsis, comments

    Taming the Sun

    Varun Sivaram

    How solar could spark a cleanenergy transition through transformative innovationcreative financing, revolutionary technologies, and flexible energy systems.Solar energy, once a nic...

  • Solar Energy Conversion II synopsis, comments

    Solar Energy Conversion II

    A. F. Janzen & R. K. Swartman

    Solar Energy Conversion II presents the proceedings of the 1980 International Symposium on Solar Energy Utilization, held in Ontario, Canada on August 1024, 1980. This book provide...