Aurora Shifters Popular Books

Aurora Shifters Biography & Facts

An aurora (pl. aurorae or auroras), also commonly known as the northern lights (aurora borealis) or southern lights (aurora australis), is a natural light display in Earth's sky, predominantly seen in high-latitude regions (around the Arctic and Antarctic). Auroras display dynamic patterns of brilliant lights that appear as curtains, rays, spirals, or dynamic flickers covering the entire sky. Auroras are the result of disturbances in the magnetosphere caused by the solar wind. Major disturbances result from enhancements in the speed of the solar wind from coronal holes and coronal mass ejections. These disturbances alter the trajectories of charged particles in the magnetospheric plasma. These particles, mainly electrons and protons, precipitate into the upper atmosphere (thermosphere/exosphere). The resulting ionization and excitation of atmospheric constituents emit light of varying colour and complexity. The form of the aurora, occurring within bands around both polar regions, is also dependent on the amount of acceleration imparted to the precipitating particles. Most of the planets in the Solar System, some natural satellites, brown dwarfs, and even comets also host auroras. Etymology The term aurora borealis was coined by Galileo in 1619, from the Roman Aurora, goddess of the dawn and the Greek name for the north wind (Boreas). The word aurora is derived from the name of the Roman goddess of the dawn, Aurora, who travelled from east to west announcing the coming of the sun. Ancient Greek poets used the corresponding name Eos metaphorically to refer to dawn, often mentioning its play of colors across the otherwise dark sky (e.g., "rosy-fingered dawn"). The words borealis and australis are derived from the names of the ancient gods of the north wind (Boreas) and the south wind (Auster) in Greek mythology. Occurrence Most auroras occur in a band known as the "auroral zone", which is typically 3° to 6° (approximately 330–660 km) wide in latitude and between 10° and 20° from the geomagnetic poles at all local times (or longitudes), most clearly seen at night against a dark sky. A region that currently displays an aurora is called the "auroral oval", a band displaced by the solar wind towards the night side of Earth. Early evidence for a geomagnetic connection comes from the statistics of auroral observations. Elias Loomis (1860), and later Hermann Fritz (1881) and Sophus Tromholt (1881) in more detail, established that the aurora appeared mainly in the auroral zone. In northern latitudes, the effect is known as the aurora borealis or the northern lights. The southern counterpart, the aurora australis or the southern lights, has features almost identical to the aurora borealis and changes simultaneously with changes in the northern auroral zone. The aurora australis is visible from high southern latitudes in Antarctica, Chile, Argentina, South Africa, New Zealand and Australia. The aurora borealis is visible from areas around the Arctic such as Alaska, the Canadian Territories, Iceland, Greenland, Norway, Sweden, Finland, Scotland, and Siberia. On rare occasions the aurora borealis can be seen as far south as the Mediterranean and the southern states of the US. A geomagnetic storm causes the auroral ovals (north and south) to expand, bringing the aurora to lower latitudes. The instantaneous distribution of auroras ("auroral oval") is slightly different, being centered about 3–5° nightward of the magnetic pole, so that auroral arcs reach furthest toward the equator when the magnetic pole in question is in between the observer and the Sun. The aurora can be seen best at this time, which is called magnetic midnight. Auroras seen within the auroral oval may be directly overhead, but from farther away, they illuminate the poleward horizon as a greenish glow, or sometimes a faint red, as if the Sun were rising from an unusual direction. Auroras also occur poleward of the auroral zone as either diffuse patches or arcs, which can be subvisual. Auroras are occasionally seen in latitudes below the auroral zone, when a geomagnetic storm temporarily enlarges the auroral oval. Large geomagnetic storms are most common during the peak of the 11-year sunspot cycle or during the three years after the peak. An electron spirals (gyrates) about a field line at an angle that is determined by its velocity vectors, parallel and perpendicular, respectively, to the local geomagnetic field vector B. This angle is known as the "pitch angle" of the particle. The distance, or radius, of the electron from the field line at any time is known as its Larmor radius. The pitch angle increases as the electron travels to a region of greater field strength nearer to the atmosphere. Thus, it is possible for some particles to return, or mirror, if the angle becomes 90° before entering the atmosphere to collide with the denser molecules there. Other particles that do not mirror enter the atmosphere and contribute to the auroral display over a range of altitudes. Other types of auroras have been observed from space; for example, "poleward arcs" stretching sunward across the polar cap, the related "theta aurora", and "dayside arcs" near noon. These are relatively infrequent and poorly understood. Other interesting effects occur such as pulsating aurora, "black aurora" and their rarer companion "anti-black aurora" and subvisual red arcs. In addition to all these, a weak glow (often deep red) observed around the two polar cusps, the field lines separating the ones that close through Earth from those that are swept into the tail and close remotely. Images Early work on the imaging of the auroras was done in 1949 by the University of Saskatchewan using the SCR-270 radar. The altitudes where auroral emissions occur were revealed by Carl Størmer and his colleagues, who used cameras to triangulate more than 12,000 auroras. They discovered that most of the light is produced between 90 and 150 km (56 and 93 mi) above the ground, while extending at times to more than 1,000 km (620 mi). Forms According to Clark (2007), there are five main forms that can be seen from the ground, from least to most visible: A mild glow, near the horizon. These can be close to the limit of visibility, but can be distinguished from moonlit clouds because stars can be seen undiminished through the glow. Patches or surfaces that look like clouds. Arcs curve across the sky. Rays are light and dark stripes across arcs, reaching upwards by various amounts. Coronas cover much of the sky and diverge from one point on it. Brekke (1994) also described some auroras as "curtains". The similarity to curtains is often enhanced by folds within the arcs. Arcs can fragment or break up into separate, at times rapidly changing, often rayed features that may fill the whole sky. These are also known as discrete auroras, which are at times bright enough to read a newspaper by at night. These forms are consistent with auroras being shaped by Earth.... Discover the Aurora Shifters popular books. Find the top 100 most popular Aurora Shifters books.

Best Seller Aurora Shifters Books of 2024

  • Accepting His Mate synopsis, comments

    Accepting His Mate

    Tamsin Ley

    Sinfully hot shifters come facetoface with human women they can't resist. Set includes Untamed Instinct and Bewitched Shifter. Excerpt: “Nnice kitty,” Darcy whispered.He continu...