E Paper Publishing Popular Books

E Paper Publishing Biography & Facts

Electronic paper, also known as electronic ink (e-ink) or intelligent paper, is a display device that mimics the appearance of ordinary ink on paper. Unlike conventional flat panel displays that emit light, an electronic paper display reflects ambient light, like paper. This may make them more comfortable to read, and provide a wider viewing angle than most light-emitting displays. The contrast ratio in electronic displays available as of 2008 approaches newspaper, and newly developed displays are slightly better. An ideal e-paper display can be read in direct sunlight without the image appearing to fade. Technologies include Gyricon, electrophoretics, electrowetting, interferometry, and plasmonics. Many electronic paper technologies hold static text and images indefinitely without electricity. Flexible electronic paper uses plastic substrates and plastic electronics for the display backplane. Applications of e-paper include electronic shelf labels and digital signage, bus station time tables, electronic billboards, smartphone displays, and e-readers able to display digital versions of books and magazines. Technologies Gyricon Electronic paper was first developed in the 1970s by Nick Sheridon at Xerox's Palo Alto Research Center. The first electronic paper, called Gyricon, consisted of polyethylene spheres between 75 and 106 micrometers across. Each sphere is a Janus particle composed of negatively charged black plastic on one side and positively charged white plastic on the other (each bead is thus a dipole). The spheres are embedded in a transparent silicone sheet, with each sphere suspended in a bubble of oil so that it can rotate freely. The polarity of the voltage applied to each pair of electrodes then determines whether the white or black side is face-up, thus giving the pixel a white or black appearance. At the FPD 2008 exhibition, Japanese company Soken demonstrated a wall with electronic wall-paper using this technology. In 2007, the Estonian company Visitret Displays was developing this kind of display using polyvinylidene fluoride (PVDF) as the material for the spheres, dramatically improving the video speed and decreasing the control voltage needed. Electrophoretic An electrophoretic display (EPD) forms images by rearranging charged pigment particles with an applied electric field. In the simplest implementation of an EPD, titanium dioxide (titania) particles approximately one micrometer in diameter are dispersed in a hydrocarbon oil. A dark-colored dye is also added to the oil, along with surfactants and charging agents that cause the particles to take on an electric charge. This mixture is placed between two parallel, conductive plates separated by a gap of 10 to 100 micrometres. When a voltage is applied across the two plates, the particles migrate electrophoretically to the plate that bears the opposite charge from that on the particles. When the particles are located at the front (viewing) side of the display, it appears white, because the light is scattered back to the viewer by the high-index titania particles. When the particles are located at the rear side of the display, it appears dark, because the light is absorbed by the colored dye. If the rear electrode is divided into a number of small picture elements (pixels), then an image can be formed by applying the appropriate voltage to each region of the display to create a pattern of reflecting and absorbing regions. EPDs are typically addressed using MOSFET-based thin-film transistor (TFT) technology. TFTs are often used to form a high-density image in an EPD. A common application for TFT-based EPDs are e-readers. Electrophoretic displays are considered prime examples of the electronic paper category, because of their paper-like appearance and low power consumption. Examples of commercial electrophoretic displays include the high-resolution active matrix displays used in the Amazon Kindle, Barnes & Noble Nook, Sony Reader, Kobo eReader, and iRex iLiad e-readers. These displays are constructed from an electrophoretic imaging film manufactured by E Ink Corporation. A mobile phone that used the technology is the Motorola Fone.Electrophoretic Display technology has also been developed by SiPix and Bridgestone/Delta. SiPix is now part of E Ink Corporation. The SiPix design uses a flexible 0.15 mm Microcup architecture, instead of E Ink's 0.04 mm diameter microcapsules. Bridgestone Corp.'s Advanced Materials Division cooperated with Delta Optoelectronics Inc. in developing Quick Response Liquid Powder Display technology.Electrophoretic displays can be manufactured using the Electronics on Plastic by Laser Release (EPLaR) process, developed by Philips Research, to enable existing AM-LCD manufacturing plants to create flexible plastic displays. Microencapsulated electrophoretic display In the 1990s another type of electronic ink based on a microencapsulated electrophoretic display was conceived and prototyped by a team of undergraduates at MIT as described in their Nature paper. J.D. Albert, Barrett Comiskey, Joseph Jacobson, Jeremy Rubin and Russ Wilcox co-founded E Ink Corporation in 1997 to commercialize the technology. E Ink subsequently formed a partnership with Philips Components two years later to develop and market the technology. In 2005, Philips sold the electronic paper business as well as its related patents to Prime View International. "It has for many years been an ambition of researchers in display media to create a flexible low-cost system that is the electronic analog of paper. In this context, microparticle-based displays have long intrigued researchers. Switchable contrast in such displays is achieved by the electromigration of highly scattering or absorbing microparticles (in the size range 0.1–5 μm), quite distinct from the molecular-scale properties that govern the behavior of the more familiar liquid-crystal displays. Micro-particle-based displays possess intrinsic bistability, exhibit extremely low power d.c. field addressing and have demonstrated high contrast and reflectivity. These features, combined with a near-lambertian viewing characteristic, result in an 'ink on paper' look. But such displays have to date suffered from short lifetimes and difficulty in manufacture. Here we report the synthesis of an electrophoretic ink based on the microencapsulation of an electrophoretic dispersion. The use of a microencapsulated electrophoretic medium solves the lifetime issues and permits the fabrication of a bistable electronic display solely by means of printing. This system may satisfy the practical requirements of electronic paper." This used tiny microcapsules filled with electrically charged white particles suspended in a colored oil. In early versions, the underlying circuitry controlled whether the white particles were at the top of the capsule (so it looked white to the viewer) or at the bottom of the capsule (so the viewer saw the color of the oil). This was essentia.... Discover the E Paper Publishing popular books. Find the top 100 most popular E Paper Publishing books.

Best Seller E Paper Publishing Books of 2024

  • In the SEA synopsis, comments

    In the SEA

    E Paper Publishing

    ‘In the SEA‘ is an interactive ebook filled with beautiful animation video clips. The story shows that even when a baby turtle is left alone, he can find his family. Also in the pr...