Kenneth A Lambert Popular Books

Kenneth A Lambert Biography & Facts

Structured programming is a programming paradigm aimed at improving the clarity, quality, and development time of a computer program by making extensive use of the structured control flow constructs of selection (if/then/else) and repetition (while and for), block structures, and subroutines. It emerged in the late 1950s with the appearance of the ALGOL 58 and ALGOL 60 programming languages, with the latter including support for block structures. Contributing factors to its popularity and widespread acceptance, at first in academia and later among practitioners, include the discovery of what is now known as the structured program theorem in 1966, and the publication of the influential "Go To Statement Considered Harmful" open letter in 1968 by Dutch computer scientist Edsger W. Dijkstra, who coined the term "structured programming".Structured programming is most frequently used with deviations that allow for clearer programs in some particular cases, such as when exception handling has to be performed. Elements Control structures Following the structured program theorem, all programs are seen as composed of three control structures: "Sequence"; ordered statements or subroutines executed in sequence. "Selection"; one or a number of statements is executed depending on the state of the program. This is usually expressed with keywords such as if..then..else..endif. The conditional statement should have at least one true condition and each condition should have one exit point at max. "Iteration"; a statement or block is executed until the program reaches a certain state, or operations have been applied to every element of a collection. This is usually expressed with keywords such as while, repeat, for or do..until. Often it is recommended that each loop should only have one entry point (and in the original structural programming, also only one exit point, and a few languages enforce this).Subroutines Subroutines; callable units such as procedures, functions, methods, or subprograms are used to allow a sequence to be referred to by a single statement. Blocks Blocks are used to enable groups of statements to be treated as if they were one statement. Block-structured languages have a syntax for enclosing structures in some formal way, such as an if-statement bracketed by if..fi as in ALGOL 68, or a code section bracketed by BEGIN..END, as in PL/I and Pascal, whitespace indentation as in Python, or the curly braces {...} of C and many later languages. Structured programming languages It is possible to do structured programming in any programming language, though it is preferable to use something like a procedural programming language. Some of the languages initially used for structured programming include: ALGOL, Pascal, PL/I, Ada and RPL but most new procedural programming languages since that time have included features to encourage structured programming, and sometimes deliberately left out features – notably GOTO – in an effort to make unstructured programming more difficult. Structured programming (sometimes known as modular programming) enforces a logical structure on the program being written to make it more efficient and easier to understand and modify. History Theoretical foundation The structured program theorem provides the theoretical basis of structured programming. It states that three ways of combining programs—sequencing, selection, and iteration—are sufficient to express any computable function. This observation did not originate with the structured programming movement; these structures are sufficient to describe the instruction cycle of a central processing unit, as well as the operation of a Turing machine. Therefore, a processor is always executing a "structured program" in this sense, even if the instructions it reads from memory are not part of a structured program. However, authors usually credit the result to a 1966 paper by Böhm and Jacopini, possibly because Dijkstra cited this paper himself. The structured program theorem does not address how to write and analyze a usefully structured program. These issues were addressed during the late 1960s and early 1970s, with major contributions by Dijkstra, Robert W. Floyd, Tony Hoare, Ole-Johan Dahl, and David Gries. Debate P. J. Plauger, an early adopter of structured programming, described his reaction to the structured program theorem: Us converts waved this interesting bit of news under the noses of the unreconstructed assembly-language programmers who kept trotting forth twisty bits of logic and saying, 'I betcha can't structure this.' Neither the proof by Böhm and Jacopini nor our repeated successes at writing structured code brought them around one day sooner than they were ready to convince themselves. Donald Knuth accepted the principle that programs must be written with provability in mind, but he disagreed with abolishing the GOTO statement, and as of 2018 has continued to use it in his programs. In his 1974 paper, "Structured Programming with Goto Statements", he gave examples where he believed that a direct jump leads to clearer and more efficient code without sacrificing provability. Knuth proposed a looser structural constraint: It should be possible to draw a program's flow chart with all forward branches on the left, all backward branches on the right, and no branches crossing each other. Many of those knowledgeable in compilers and graph theory have advocated allowing only reducible flow graphs.Structured programming theorists gained a major ally in the 1970s after IBM researcher Harlan Mills applied his interpretation of structured programming theory to the development of an indexing system for The New York Times research file. The project was a great engineering success, and managers at other companies cited it in support of adopting structured programming, although Dijkstra criticized the ways that Mills's interpretation differed from the published work.As late as 1987 it was still possible to raise the question of structured programming in a computer science journal. Frank Rubin did so in that year with an open letter titled "'GOTO Considered Harmful' Considered Harmful". Numerous objections followed, including a response from Dijkstra that sharply criticized both Rubin and the concessions other writers made when responding to him. Outcome By the end of the 20th century, nearly all computer scientists were convinced that it is useful to learn and apply the concepts of structured programming. High-level programming languages that originally lacked programming structures, such as FORTRAN, COBOL, and BASIC, now have them. Common deviations While goto has now largely been replaced by the structured constructs of selection (if/then/else) and repetition (while and for), few languages are purely structured. The most common deviation, found in many languages, is the use of a return statement for early exit from a subroutine. This results in multiple exit points, instead of the single.... Discover the Kenneth A Lambert popular books. Find the top 100 most popular Kenneth A Lambert books.

Best Seller Kenneth A Lambert Books of 2024

  • Easy GUI Programming in Java synopsis, comments

    Easy GUI Programming in Java

    Kenneth A. Lambert

    Learn to program graphical user interfaces in Java from a college professor and established author with over 30 years of teaching experience.   This book presents an introduct...

  • Easy GUI Programming in Python synopsis, comments

    Easy GUI Programming in Python

    Kenneth A. Lambert

    Learn to program graphical user interfaces from a college professor and established author with over 25 years of teaching experience.   This book presents an introduction to G...

  • A Gentle Introduction to Functional Programming in Haskell synopsis, comments

    A Gentle Introduction to Functional Programming in Haskell

    Kenneth A. Lambert

    Learn functional programming in Haskell from a college professor with over 30 years of teaching experience. This book presents an introduction to functional programming in Haskell....