Landscape Institute Near Pixel Popular Books

Landscape Institute Near Pixel Biography & Facts

An active-pixel sensor (APS) is an image sensor, which was invented by Peter J.W. Noble in 1968, where each pixel sensor unit cell has a photodetector (typically a pinned photodiode) and one or more active transistors. In a metal–oxide–semiconductor (MOS) active-pixel sensor, MOS field-effect transistors (MOSFETs) are used as amplifiers. There are different types of APS, including the early NMOS APS and the now much more common complementary MOS (CMOS) APS, also known as the CMOS sensor. CMOS sensors are used in digital camera technologies such as cell phone cameras, web cameras, most modern digital pocket cameras, most digital single-lens reflex cameras (DSLRs), mirrorless interchangeable-lens cameras (MILCs), and lensless imaging for cells. CMOS sensors emerged as an alternative to charge-coupled device (CCD) image sensors and eventually outsold them by the mid-2000s. The term active pixel sensor is also used to refer to the individual pixel sensor itself, as opposed to the image sensor. In this case, the image sensor is sometimes called an active pixel sensor imager, or active-pixel image sensor. History Background While researching metal–oxide–semiconductor (MOS) technology, Willard Boyle and George E. Smith realized that an electric charge could be stored on a tiny MOS capacitor, which became the basic building block of the charge-couple device (CCD), which they invented in 1969. An issue with CCD technology was its need for nearly perfect charge transfer in read out, which, "makes their radiation [tolerance?] 'soft', difficult to use under low light conditions, difficult to manufacture in large array sizes, difficult to integrate with on-chip electronics, difficult to use at low temperatures, difficult to use at high frame rates, and difficult to manufacture in non-silicon materials that extend wavelength response." At RCA Laboratories, a research team including Paul K. Weimer, W.S. Pike and G. Sadasiv in 1969 proposed a solid-state image sensor with scanning circuits using thin-film transistors (TFTs), with photoconductive film used for the photodetector. A low-resolution "mostly digital" N-channel MOSFET (NMOS) imager with intra-pixel amplification, for an optical mouse application, was demonstrated by Richard F. Lyon in 1981. Another type of image sensor technology that is related to the APS is the hybrid infrared focal plane array (IRFPA), designed to operate at cryogenic temperatures in the infrared spectrum. The devices are two chips that are put together like a sandwich: one chip contains detector elements made in InGaAs or HgCdTe, and the other chip is typically made of silicon and is used to read out the photodetectors. The exact date of origin of these devices is classified, but they were in use by the mid-1980s. A key element of the modern CMOS sensor is the pinned photodiode (PPD). It was invented by Nobukazu Teranishi, Hiromitsu Shiraki and Yasuo Ishihara at NEC in 1980, and then publicly reported by Teranishi and Ishihara with A. Kohono, E. Oda and K. Arai in 1982, with the addition of an anti-blooming structure. The pinned photodiode is a photodetector structure with low lag, low noise, high quantum efficiency and low dark current. The new photodetector structure invented at NEC was given the name "pinned photodiode" (PPD) by B.C. Burkey at Kodak in 1984. In 1987, the PPD began to be incorporated into most CCD sensors, becoming a fixture in consumer electronic video cameras and then digital still cameras. Since then, the PPD has been used in nearly all CCD sensors and then CMOS sensors. Passive-pixel sensor The precursor to the APS was the passive-pixel sensor (PPS), a type of photodiode array (PDA). A passive-pixel sensor consists of passive pixels which are read out without amplification, with each pixel consisting of a photodiode and a MOSFET switch. In a photodiode array, pixels contain a p-n junction, integrated capacitor, and MOSFETs as selection transistors. A photodiode array was proposed by G. Weckler in 1968, predating the CCD. This was the basis for the PPS, which had image sensor elements with in-pixel selection transistors, proposed by Peter J.W. Noble in 1968, and by Savvas G. Chamberlain in 1969. Passive-pixel sensors were being investigated as a solid-state alternative to vacuum-tube imaging devices. The MOS passive-pixel sensor used just a simple switch in the pixel to read out the photodiode integrated charge. Pixels were arrayed in a two-dimensional structure, with an access enable wire shared by pixels in the same row, and output wire shared by column. At the end of each column was a transistor. Passive-pixel sensors suffered from many limitations, such as high noise, slow readout, and lack of scalability. Early (1960s–1970s) photodiode arrays with selection transistors within each pixel, along with on-chip multiplexer circuits, were impractically large. The noise of photodiode arrays was also a limitation to performance, as the photodiode readout bus capacitance resulted in increased read-noise level. Correlated double sampling (CDS) could also not be used with a photodiode array without external memory. It was not possible to fabricate active-pixel sensors with a practical pixel size in the 1970s, due to limited microlithography technology at the time. Because the MOS process was so variable and MOS transistors had characteristics that changed over time (Vth instability), the CCD's charge-domain operation was more manufacturable and higher performance than MOS passive-pixel sensors. Active-pixel sensor The active-pixel sensor consists of active pixels, each containing one or more MOSFET amplifiers which convert the photo-generated charge to a voltage, amplify the signal voltage, and reduce noise. The concept of an active-pixel device was proposed by Peter Noble in 1968. He created sensor arrays with active MOS readout amplifiers per pixel, in essentially the modern three-transistor configuration: the buried photodiode-structure, selection transistor and MOS amplifier. The MOS active-pixel concept was implemented as the charge modulation device (CMD) by Olympus in Japan during the mid-1980s. This was enabled by advances in MOSFET semiconductor device fabrication, with MOSFET scaling reaching smaller micron and then sub-micron levels during the 1980s to early 1990s. The first MOS APS was fabricated by Tsutomu Nakamura's team at Olympus in 1985. The term active pixel sensor (APS) was coined by Nakamura while working on the CMD active-pixel sensor at Olympus. The CMD imager had a vertical APS structure, which increases fill-factor (or reduces pixel size) by storing the signal charge under an output NMOS transistor. Other Japanese semiconductor companies soon followed with their own active pixel sensors during the late 1980s to early 1990s. Between 1988 and 1991, Toshiba developed the "double-gate floating surface transistor" sensor, which had a lateral APS structure, with each pixel containing a buried-channel MOS photoga.... Discover the Landscape Institute Near Pixel popular books. Find the top 100 most popular Landscape Institute Near Pixel books.

Best Seller Landscape Institute Near Pixel Books of 2024

  • Landscape Architecture synopsis, comments

    Landscape Architecture

    Landscape Institute & Near Pixel

    A new publication from the Landscape Institute, 'Landscape Architecture A guide for clients. Containing 38 exemplar projects encompassing housing, regeneration, culture, infrastr...