Thomas W Baumann Popular Books

Thomas W Baumann Biography & Facts

Decaffeination is the removal ("de-") of caffeine from coffee beans, cocoa, tea leaves, and other caffeine-containing materials. Decaffeinated products are commonly termed by the abbreviation decaf. Decaffeinated drinks contain typically 1–2% of the original caffeine content, but sometimes as much as 20%. Decaffeination of coffee Friedlieb Ferdinand Runge performed the first isolation of caffeine from coffee beans in 1820, after the German poet Goethe heard about his work on belladonna extract, and requested he perform an analysis on coffee beans. Though Runge was able to isolate the compound, he did not learn much about the chemistry of caffeine itself, nor did he seek to use the process commercially to produce decaffeinated coffee. Decaffeination processes Various methods can be used for decaffeination of coffee. These methods take place prior to roasting and may use organic solvents such as dichloromethane or ethyl acetate, supercritical CO2, or water to extract caffeine from the beans, while leaving flavour precursors in as close to their original state as possible. Organic solvent processes Direct method The first commercially successful decaffeination process was invented by German merchant Ludwig Roselius and co-workers in 1903, after Roselius observed that a consignment of coffee beans accidentally soaked in sea water had lost most of their caffeine content while losing little of their flavour. The process was patented in 1906, and involved steaming coffee beans with various acids or bases, then using benzene as a solvent to remove the caffeine. Coffee decaffeinated this way was sold as Kaffee HAG after the company name Kaffee Handels-Aktien-Gesellschaft (Coffee Trading Company) in most of Europe, as Café Sanka in France and later as Sanka brand coffee in the United States. Café HAG and Sanka are now worldwide brands of Kraft Foods. Methods similar to those first developed by Roselius have continued to dominate, and are sometimes known as the direct organic solvent method. However, because of health concerns regarding benzene (which is recognized today as a carcinogen), other solvents, such as dichloromethane or ethyl acetate, are now used. The unroasted (green) beans are first steamed and then rinsed with the solvent which extracts the caffeine, while leaving other constituents largely unaffected. The process is repeated between 8 and 12 times until the caffeine content meets the required standard (97% of caffeine removed according to the US standard, or 99.9% caffeine-free by mass per the EU standard). Indirect method Another variation of Roselius' method is the indirect organic solvent method. In this method, instead of treating the beans directly, they are first soaked in hot water for several hours, then removed. The remaining water is treated with solvents (e.g. dichloromethane or ethyl acetate) to extract the caffeine from the water. As in other methods, the caffeine can then be separated from the organic solvent by simple evaporation. The same water is recycled through this two-step process with new batches of beans. An equilibrium is reached after several cycles, wherein the water and the beans have a similar composition except for the caffeine. After this point, the caffeine is the only material removed from the beans, so no coffee strength or other flavorings are lost. Because water is used in the initial phase of this process, indirect method decaffeination is sometimes referred to as "water-processed". This method was first mentioned in 1941, and people have made significant efforts to make the process more "natural" and a true water-based process by finding ways to process the caffeine out of the water in ways that circumvent the use of organic solvents. Swiss Water process An alternative method for removal of caffeine from coffee is the Swiss Water process. This process uses no organic solvents, and instead only water is used to decaffeinate beans. It is a technique first developed in Switzerland in 1933, and commercialized by Coffex S.A. in 1980. The Swiss Water process was then introduced by The Swiss Water Decaffeinated Coffee Company of Burnaby, British Columbia, in 1988. The process uses green coffee extract (GCE) for the caffeine extraction mechanism. Green coffee extract is a solution containing the water-soluble components of green coffee except for the caffeine, obtained by soaking green coffee beans in hot water, then filtering through an activated charcoal filter to remove the caffeine molecules. Fresh beans containing both caffeine and the other components are added to the GCE solution, where the gradient pressure difference between the GCE (which is caffeine-lean) and the green coffee (which is caffeine-rich) causes the caffeine molecules to migrate from the green coffee into the GCE. Because GCE is saturated with the other water-soluble components of green coffee, only the caffeine molecules migrate to the GCE; the other water-soluble coffee elements are retained in the green coffee. The newly caffeine-rich GCE solution is then passed through the activated carbon filters to remove the caffeine again, and the process is repeated. The continuous batch process takes 8–10 hours to meet the final residual decaffeinated target. Food engineer Torunn Atteraas Garin also developed a process to remove caffeine from coffee. Triglyceride process In this process, green coffee beans are soaked in a hot water and coffee solution to draw the caffeine to the surface of the beans. Next, the beans are transferred to another container and immersed in coffee oils that were obtained from spent coffee grounds and left to soak. After several hours of high temperatures, the triglycerides in the oils remove the caffeine, but not the flavor elements, from the beans. The beans are separated from the oils and dried. The caffeine is removed from the oils, which are reused to decaffeinate another batch of beans. This is a direct-contact method of decaffeination. Supercritical CO2 process Food scientists have also turned to supercritical carbon dioxide (sCO2) as a means of decaffeination. Developed by Kurt Zosel, a scientist of the Max Planck Institute, it uses CO2 (carbon dioxide), heated and pressurised above its critical point, to extract caffeine. Green coffee beans are steamed and then added to a high pressure vessel. A mixture of water and CO2 is circulated through the vessel at 300 atm and 65 °C (149 °F). At this pressure and temperature CO2 is a supercritical fluid, with properties midway between a gas and a liquid. Caffeine dissolves into the CO2; but compounds contributing to the flavour of the brewed coffee are largely insoluble in CO2 and remain in the bean. In a separate vessel, caffeine is scrubbed from the CO2 with additional water. The CO2 is then recirculated to the pressure vessel. Caffeine content of coffee Caffeine content of decaffeinated coffee To ensure product quality, manufacturers are required to test the newly decaffein.... Discover the Thomas W Baumann popular books. Find the top 100 most popular Thomas W Baumann books.

Best Seller Thomas W Baumann Books of 2024

  • Impressions from a Botanical Collection synopsis, comments

    Impressions from a Botanical Collection

    Thomas W Baumann

    Beatrice Häsler’s artwork on the Botanical Collection of UZH: After a short description of the collection’s origin, a selection of the ‘impressions’ is presented. In the booklet’s ...